Solve each problem.

Answers

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
7) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
10) Katie spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Solve each problem.

1) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
2) A chef used $1 / 2$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
3) A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
4) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
6) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
7) A water hose had filled up $1 / 3$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
8) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
9) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
10) Katie spent $1 / 2$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

1. $1 \frac{1}{2}$ seconds
2. \qquad
3. \qquad $11 / 2$ minutes
4.
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
$1 \frac{1}{2}$ hours
10. \qquad
