

Solve each problem.

- A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- A chef used $\frac{1}{2}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- 4) A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- 5) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?
- 7) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 8) An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- Katie spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

- 1. _____
- 2
- 3.
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8.
- 9. _____
- 10. ____

Solve each problem.

- 1) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?
- A chef used $\frac{1}{2}$ of a bag of potatoes to make $\frac{1}{3}$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
- A small can of paint was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a paint sprayer. How many cans of paint would it take to completely fill the sprayer?
- A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- 8) An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- Katie spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?

Answers

- $1^{1}/_{2}$ seconds
- $_{2.}$ $1\frac{1}{2}$ bags
- 3. 3 cans
- $1\frac{1}{2}$ minutes
- $1\frac{1}{2}$ hours
- 6. **3 baskets**
- $_{7.}$ 1 $\frac{1}{2}$ hours
- 8. **3 potatoes**
- 9. **3 bags**
- $_{10.}$ 1 $\frac{1}{2}$ hours